BASIC ELECTRICAL ENGINEERING FORMULAS

BASIC ELECTRICAL CIRCUIT FORMULAS					
CIPCUIT	IMPEDANCE		VOLT-A	ENERGY	
ELEMENT	absolute value	complex form	instantaneous values	RMS values for sinusoidal signals	(dissipated on R or stored in L, C)
RESISTANCE	R	R	v=iR	Vrms=IrmsR	E=Irms ² R×t
INDUCTANCE	2πfL	jωL	v=L×di/dt	Vrms=Irms×2πfL	E=Li ² /2
CAPACITANCE	$1/(2\pi fC)$	1/jωC	i=C×dv/dt	Vrms=Irms/($2\pi fC$)	$E=Cv^2/2$
Notes:					

R- electrical resistance in ohms, L- inductance in henrys, C- capacitance in farads, f - frequency in hertz, t- time in seconds, $\pi \approx 3.14159$;

ω=2πf - angular frequency; j - imaginary unit (j²=-1)

BASIC ELECTRICAL THEOREMS AND CIRCUIT ANALYSIS LAWS				
LAW	DEFINITION	RELATIONSHIP		
Ohm's Law modified for AC circuits with sinusoidal signals	Ù=Z×Ì, where Ù and Ì - voltage and current phasors, Z - complex impedance (for resistive circuits: u=R×i)	Lorentz force law, Faraday's law and Drude model		
Kirchhoff's Current Law (KCL)	The sum of electric currents which flow into any junction in an electric circuit is equal to the sum of currents which flow out	Conservation of electric charge		
Kirchhoff's Voltage Law (KVL)	The sum of the electrical voltages around a closed circuit must be zero	Conservation of energy		

EQUATIONS FOR SERIES AND PARALLEL CONNECTIONS					
CIRCUIT ELEMENT	SERIES CONNECTION		PARALLEL CONNECTION		
RESISTANCE	••••• R1 R2	Rseries= R1+R2+	R1 R2	Rparallel= 1/ (1/R1+1/R2+)	
INDUCTANCE	•••	Lseries= L1+L2+		Lparallel= 1/(1/L1+1/L2+)	
CAPACITANCE	•	Cseries= 1/ (1/C1+1/C2+)		Cparallel= C1+C2+	

RLC IMPEDANCE FORMULAS				
CIRCUIT CONNECTION	COMPLEX FORM	ABSOLUTE VALUE		
R L C 	Z=R+jωL+1/jωC	$Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$		
	Ζ= 1/(1/R+1/jωL+jωC)	$\mathbf{Z} = \frac{1}{\sqrt{\frac{1}{\mathbf{R}^2} + \left(\boldsymbol{\omega} \mathbf{C} - \frac{1}{\boldsymbol{\omega} \mathbf{L}}\right)^2}}$		

QUANTITY	SYM- BOL	SI UNIT	SI EQUATION	CGS UNIT	CGS EQUATION	CONVER- SION FACTOR
Magnetic induction	В	tesla (T)	B=μ ₀ (H+M)	Gauss (G)	$B = H + 4\pi M$	$1 T = 10^4 G$
Magnetic field strength	Н	ampere/ meter (A/m)	H = NI/lc (lc - magnetic path, m)	Oersted (Oe)	$H = 0.4\pi \text{NI/lc}$ (lc - magnetic path, cm)	$\begin{array}{r}1 \text{ A/m} = \\4 \pi \times 10^{-3} \\\text{Oe}\end{array}$
Magnetic flux	Φ	weber (Wb)	$\Phi = BAc$ (Ac - area, m ²)	Maxwell (M)	$\Phi = BAc$ (Ac - area, cm ²)	$1 \text{ Wb} = 10^8 \text{ M}$
Magnetization	М	ampere/ meter (A/m)	M=m/V (m- total magnetic moment, V- volume, m ³)	emu/cm ³	M=m/V (m- total magnetic moment, V- volume, cm ³)	$1 \text{ A/m} = 10^{-3} \text{ emu / cm}^3$
Magnetic permeability of vacuum	μο	newton/ ampere ²	$\mu_0 = 4\pi \times 10^{-7}$	1	-	4π×10 ⁻⁷
Inductance	L	henry	$L=\mu_{o}\mu N^{2}Ac/lc$ (N- turns, Ac- area, m ² , lc - magnetic path, m)	henry	$L= \\ = 0.4\pi\mu N^{2}Ac/lc \times \\ \times 10^{-8} \\ (N- turns, \\ Ac-area, cm^{2}, \\ lc - magnetic \\ path, cm) \\ \end{bmatrix}$	1
Emf (voltage)	V	volt	$V = -Nd\Phi/dt$ (N- turns)	volt	$V=-10^{-8} \times \times N \times d\Phi/dt$ (N- turns)	1

MAGNETIC FIELD UNITS AND EQUATIONS

	MAXWELL'S EQUATIONS	IN FREE SPACE (IN SI UNITS)		
LAW	DIFFERENTIAL FORM	INTEGRAL FORM		
Gauss' law for electricity Gauss' law for magnetism Faraday's law	$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} = 4\pi k\rho$ $\nabla \cdot \vec{B} = 0$ $\nabla \mathbf{x} \vec{E} = -\frac{\partial \vec{B}}{\partial z}$	$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$ $\oint \vec{B} \cdot d\vec{A} = 0$ $\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{r}$		
of induction Ampere's law	$\nabla \mathbf{x} \vec{B} = \frac{\vec{J}}{\varepsilon_0 c^2} + \frac{1}{c^2} \frac{\vec{\partial E}}{\vec{\partial t}}$	$\oint \vec{B} \cdot d\vec{s} = \mu_0 i + \frac{1}{c^2} \frac{\partial}{\partial t} \int \vec{E} \cdot d\vec{A}$		
NOTES : E - electric field, ρ - charge density, $\varepsilon_0 \approx 8.85 \times 10^{-12}$ - electric permittivity of free space, $\pi \approx 3.14159$, k - Boltzmann's constant, q - charge, B - magnetic induction, Φ - magnetic flux, J - current density, i - electric current, c $\approx 299\ 792\ 458\ m/s$ - the speed of light, $\mu_0 = 4\pi \times 10^{-7}$ - magnetic permeability of free space, ∇ - del operator (if V is a vector function, then $\nabla \cdot V$ - divergence of V, $\nabla \times V$ - the curl of V).				

For more reference info see <u>EE Information Online</u>

© 2009 Lazar Rozenblat

<u>SMPS Power Supply Guide</u> (<u>http://www.smps.us/</u>) - tutorials, electronics reference, formulas, schematics.